***个靶向微泡心脏成像研究是在急性缺血再灌注损伤模型中进行的,该模型在狗身上注射了涂有磷脂酰丝氨酸的白细胞靶向微泡,磷脂酰丝氨酸是颗粒吞噬摄取的标记物。这些微泡针对的是在血管中积累且尚未外渗的白细胞:在再灌注后1小时观察到**靶向的造影剂在梗死区积累。在心肌中观察到超声造影剂信号、中性粒细胞靶向放射性示踪剂的积累与髓过氧化物酶(炎症的酶标记物)之间的相关性。上述方法的对比机制是基于白细胞在缺血-再灌注损伤区与上调的细胞粘附分子(p-选择素、e-选择素、ICAM-1和VCAM-1)在血管内膜上的强烈结合现象。因此,不依赖白细胞作为微泡的二级捕获目标可能是更好的策略,而是设计真正的分子显像剂,直接结合内皮细胞上上调的p-选择素、e-选择素、ICAM-1或VCAM-1分子。这样的试剂已经可用,并在体外流动室设置以及模型体内系统中进行了测试。超声微泡造影剂的外壳是有脂质组成的。辽宁超声微泡包裹药物
微泡表面的电荷和配体可以用来增加靶向的特异性。Lindner等人发现,由于与先天免疫系统的相互作用,阳离子微泡在经历缺血/再灌注和炎症的组织的微循环中持续存在。然而,考虑到生物环境的复杂性,静电相互作用通常没有足够的特异性。另一方面,配体-受体相互作用在生物介质中产生高特异性。在这种情况下,微泡表面被配体装饰,这些配体特异性地结合血管腔内细胞上的受体。如上所述,脂质聚合物是形成稳定微泡所必需的。聚合物的存在需要配体和单层外壳之间的间隔物,以便配体询问其在相对表面上的受体。通常情况下,配体被与周围的链长度相等或更长的间隔剂拴在一起。这使配体比较大限度地暴露于生物环境中。旨在比较大限度地使配体暴露于靶组织的表面结构也存在增加免疫原性化合物呈递的风险,从而导致早期颗粒***,或者更糟的是,产生超敏反应。例如,有的实验室的数据清楚地表明,存在于微泡上的生物素共轭脂聚合物***了人类和小鼠的补体系统。需要更多的研究来测试栓系抗体或肽配体是否也会引发免疫反应。为了解释免疫原性作用,Borden等人(47)表明,配体可以被聚合物覆盖层掩盖以提高循环半衰期,然后可以通过超声辐射力局部显示以与靶标结合。辽宁超声微泡包裹药物声空化是在声压场作用下液体中蒸气泡的形成和坍缩。
超声微泡的粒径大小直接影响微泡的动物的体内渗透和代谢。首先,与传统药物相比,超声造影剂微泡相对较大。微泡的直径一般为1-10um。**血管特别具有渗透性,通常有较大的内皮间隙;然而,造影剂微泡通常太大而无法脱离脉管系统。在Wheatley等人**近的一篇文章中,描述了一种纳米颗粒超声造影剂(直径450nm)具有良好的声学性能。该造影剂在实验家兔中产生了良好的肾脏混浊。南京星叶生物也有500nm左右的超声微泡造影剂。虽然超声造影剂的循环时间在过去几年有所增加,但这也是超声绐药时需要关注的问题。例如,索诺维的消除半衰期为6分钟。Albunex的摄取发生在大鼠和猪的肝脏、肺和脾脏,70%在3分钟内从血液中***。如果药物被网状内皮系统从循环中取出,则循环时间可能不够长,无法将更多的药物递送到目标区域。造影剂通常被注入外周静脉,因此在一个给定的循环周期中,只有少量的造影剂会通过**。为了破坏足够的造影剂以***增加局部浓度,必须进行多次循环。聚合物壳剂可**增加循环时间。虽然超声微泡是相对较大的药物,但可以附着在气泡表面或纳入内部脂质层的药物量是一个问题。
超声微泡的大小差异影响超声微泡的药代动力学、病变部位靶向、内吞过程和细胞摄取。人体生物系统对不同颗粒的反应不同,小于8µm的气泡具有模拟红细胞循环的优点,从而促进其扩散到血管和***间的循环中。除此之外,气泡的大小不应超过8µm,因为它可能导致并发症,如血流中的动脉栓塞。因此,超声微泡在早期开发时就被用作理想的造影剂,并被应用于超声分子成像、磁共振成像(MRI)、近红外成像(NIRF)、磁共振成像(MRI)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)、光学成像和对比增强超声(CEUS)成像的诊断。目前,超声微泡被用作***和***药物、抗体、基因和miRNA的递送剂,它们可以与光敏剂结合以辅助成像。超声微泡还可以通过MRI/NIR/ US等三模成像方法提高***效率,从而减少重复,对靶***/组织的危害相对较小。将配体附着在微泡表面的基本方法有两种:要么通过直接共价键,要么通过生物素-亲和素连接。
组织中的微泡检测可以利用超声介导的微泡破坏。超声压力通常以机械指数(MI)的形式出现在医学成像系统的屏幕上,一个相对商,计算为峰值负声压除以频率的平方根。非线性微泡行为一般在声压较高时表现得更明显(例如MI 0.2)。在某些系统中,它可能是检测到的***机会,例如,较小的微泡。在更高的压力下(MI 0.4和高达1-1.9,取决于频率),微泡被破坏,它们的声学后向散射信号完全消失,这可以提供额外的证据,证明目标造影剂存在于组织中。一些气泡壳(通常是那些涂有薄脂质单层的)是柔韧性的,即使在低压超声(例如MI 0.06)下也会振动。对于厚壳聚合物气泡,除非达到临界压力并且外壳破裂,否则微泡不会振动,并且声回波响应仍然很低。对于壳较厚的气泡,从气泡中产生回声的临界声能更高。超声照射联合纳米微泡的生物学效应。辽宁超声微泡包裹药物
目前,超声微泡已发展为多模态造影剂、光热剂等。辽宁超声微泡包裹药物
超声微泡作为纳米医学,在医学领域的诊断和***方面具有多方面的优势,目前,超声微泡已发展为多模态造影剂、光热剂和***剂。市面上有各种商用mb造影剂,如Levovist、Definity、option、Sonazoid和Sonovue,具有不同的特性、成分和尺寸变化,范围在1-8µm。例如,Levovist(基于空气填充的半乳糖/棕榈酸mb)可以通过减少噪声信号来改善超声成像,而SonoVue(基于六氟化硫填充的脂质mb)在外周血中高度稳定。在临床前和临床阶段的诊断中,超声微泡作为造影剂与成像仪器相结合,辅助疾病的可视化和表征。这种成像过程被称为分子成像(MI),因为它可以在动物和人类的分子和细胞水平上进行观察。由于MI的非侵入性,它的应用具有附加价值,它为组织表型的检测和评估以及早期疾病提供了实时可视化。更重要的是,MI还可用于分析细胞相互作用和监测***递送情况。为了获得有利的结果,MI需要两个组成部分,即成像仪器和纳米药物。理想情况下,使用的仪器必须是非侵入性的,并且具有高分辨率和灵敏度的能力,可以检测和监测成像剂。辽宁超声微泡包裹药物
文章来源地址: http://yyby.chanpin818.com/swzp/qtswzp/deta_23786257.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。