脂质体配方中脂类的毒性由于LNPs主要由天然脂质组成,它们被认为是无药理活性和毒性**小的。然而,在某些情况下,LNP并非免疫惰性,而LNP成分是可能对人体细胞有毒的非天然化合物。例如,虽然阳离子脂质作为递送脆弱化合物(如核酸)的载体提供了巨大的希望,但一些阳离子脂质会引起细胞毒性。在某些情况下,阳离子脂质会减少细胞中的有丝分裂,在细胞的细胞质中形成液泡,并对关键的细胞蛋白如蛋白激酶c造成有害影响阳离子脂质的细胞毒性取决于它们的结构亲水头基团;具有季铵头基的两亲化合物比具有叔胺头基的两亲化合物毒性更大。疏水链对脂质毒性的影响还没有得到很好的研究,阻碍了低毒性脂质的设计。脂质分子的疏水部分强烈调节其相行为及其对LNP的有用性,但某些脂质相的存在也与膜损伤和细胞毒性有关。PEG-脂质偶联物也可能引起意想不到的毒性,而已知含有PEG-脂质偶联物的LNPs与免疫细胞相互作用,产生针对某些聚乙二醇化脂质的不想要的抗体。阳离子脂质体递送化药和核酸的优势。四川全氟烷脂质体载药
脂质体制备方法:破碎技术尺⼨和尺⼨分布是脂质体性能和安全性的关键属性。有⼏种⽅法可⽤于减少脂质体的尺⼨,如(超)超声(通过浴或探针),挤压,均质,或组合⽅法,如冻融挤压,冻融超声和⾼压均质挤压技术。在这些技术中,挤压和⾼压均质(HPH)是在制药制造中**常⽤的技术。⼤尺⼨的脂质体通过聚碳酸酯膜(50nm~5µm)成为粒径分布精细的较⼩的脂质体。众所周知,商业化的纳⽶脂质体产品,包括Onivyde、Vyxeos、Marqibo等,都是采⽤这种⽅法进⾏⽣产的。该⽅法相对简单,重现性好,只需要适中的条件。尺⼨减⼩的潜在机制是MLV在膜孔⼊⼝处破裂,并在膜通过过程中重新排列。关键的⼯艺参数,如聚碳酸酯膜的孔径、通过循环次数、压⼒和流速等,都可以影响脂质体的⼤⼩和⽚层性。Ong等⼈发现,在⽐较其他不同的纳⽶化技术(包括冻融超声、超声和均质化)时,挤出是***的技术。然⽽,挤压可能会降低脂质体的包封性并改变不对称脂质体的结构。HPH⽤于⽣产各种纳⽶制剂,如脂质体、纳⽶晶体和纳⽶乳液。它既适⽤于⽔体系,也适⽤于⾮⽔体系,并提供不同的⽣产规模,从容量为10L/h的实验室规模到容量为10万L/h的⼤型⽣产规模。江苏成都脂质体载药脂质与生物活性小分子(如叶酸)的结合已被研究用于靶向递送核酸。
microRNA脂质体
microRNA是真核细胞中发现的短(约22mer)非编码RNA,通过结合互补的mRNA序列发挥生物调节剂的作用。miRNA以初级miRNA的形式从其编码的核基因转录,其长度为数百个核苷酸。RNaseIII酶,Drosha,将初级miRNA加工成pre-miRNA(长度为70个核苷酸),携带一个特征的发夹环。然后pre-miRNA移动到细胞质中,在那里RNaseIII酶Dicer产生成熟的miRNA和乘客链。***,成熟的miRNA被整合到RNAi诱导的沉默复合体中,以降解它们的靶mRNA。由DOTMA、胆固醇和vitaminETPGS1k琥珀酸盐组成的阳离子脂质体被证明可以有效递送pre-miRNA-133b,导致A549非小肺*细胞中成熟miRNA-133b的表达比对照组细胞增加2.3倍,Mcl-1蛋白的表达减少1.8倍。经尾静脉注射含有pre-miRNA-133b的阳离子脂质体(1.5mg/kg)的ICR小鼠肺组织中成熟miRNA-133b的表达比接受含有紊乱的pre-mirna的阳离子脂质体的小鼠高52倍。
非病毒载体通常具有比病毒载体更低的转染效率,但由于它们被认为要安全得多,因此已被***研究。纳米颗粒递送系统,其中阳离子脂质纳米颗粒通过核酸的负磷酸基团装载,是一类主要的非病毒载体,显示出高生产力和装载效率。用于携带核酸的纳米颗粒系统在整体上可分为基于脂质或聚合物的纳米颗粒,在与核酸相互作用后,每种纳米颗粒都被称为“脂质复合物”或“多聚体”。这些复合物的细胞递送被认为是通过内吞作用发生的,然后内体逃逸到细胞质中。阳离子脂质体作为核酸的一种传递系统,具有一定的优势。首先,阳离子脂质体在体内给药后是可生物降解的。内源性酶的存在可以分解脂质体的脂质成分。脂质体在各种纳米载体之间****的生物相容性导致在体内研究中使用阳离子脂质体递送各种sirna。脂质组成依赖性的表面电荷密度调节可以控制与带负电的核酸的相互作用力。聚乙二醇化脂质或功能性脂质的包含可以使脂质体的多种表面修饰成为可能。此外,在阳离子脂质体的脂质双层中包含亲脂性化学药物可以提供***药物和***性核酸的共递送。鉴于阳离子脂质体的优势,人们已经研究了阳离子脂质体用于递送各种核酸,如质粒DNA、反义寡核苷酸和siRNA。脂质体制备方法:超声破碎和挤压技术。
商业脂质体产品,包括Visudyne和AmBisome,使⽤这种⽅法制造。MLV悬浮液在⾼压下通过⼀个狭窄的间隙,通过剪切⼒、湍流和速度梯度产⽣的流体空化⽽被分解,然后重新排列成更⼩的脂质体。颗粒⼤⼩和粒度分布由均质过程的参数决定,如压⼒、处理周期、阀⻔和冲击设计、流速等;它们还受到样品性质的影响,包括散装介质的组成和粘度以及颗粒的初始尺⼨分布。不断增加的压⼒和处理循环会降低颗粒尺⼨和多分散性指数(PDI),但也会导致封装效率降低。聚乙二醇在免疫脂质体中起到了重要作用。四川全氟烷脂质体载药
核酸与化学增敏剂在阳离子脂质体共同递送。四川全氟烷脂质体载药
主动药物装载⽅法,也称为远程药物装载⽅法,涉及在空脂质体产⽣后装载药物制剂。pH值或离⼦浓度的跨膜梯度是促进药物跨膜扩散进⼊脂质体内核的驱动⼒。药物包载过程⼤约需要5~30分钟,可达到较⾼的装载效率(90%以上)。Doxil是基于硫酸铵跨膜梯度的药物负载的典型例⼦。由于脂质体核⼼的(NH4)2SO4浓度远⾼于外界介质,具有⾼渗透性和⾟醇-缓冲分配系数的DOX-NH2中性分⼦通过脂质双分⼦层扩散,具有纤维状结晶形式的(DOX-NH3)2SO4沉淀在脂质体的核⼼产⽣。(DOX-NH3)2SO4的低溶解度使脂质体内渗透压降⾄比较低,从⽽保持脂质体的完整性。对于Myocet产品临床使⽤前先加载DOX。跨膜pH梯度是DOX加载的驱动⼒。Myocet在⼀个包装中有三瓶,包括1号瓶::阿霉素HCl红⾊冻⼲粉;2号瓶:脂质体悬浮液溶于pH4-5300mM 柠檬酸中;3号瓶:碳酸钠缓冲液。临床使⽤前将空脂质体(2号瓶)注射到碳酸钠缓冲液(3号瓶)中,调节外脂质体介质pH值为7-8,然后与DOX⽣理盐⽔溶液混合。脂质体介质中中性形式的DOX分⼦(pKa=8.3)穿过脂质体双分⼦层,在囊泡内部形成独特的DOX-柠檬酸复合物。DOX-柠檬酸盐复合物呈现成束的柔性纤维,归因于DOX单体具有相对平坦的环形堆叠在⼀起形成纤维,负载效率可达95%以上。四川全氟烷脂质体载药
文章来源地址: http://yyby.chanpin818.com/swzp/qtswzp/deta_23007827.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。